
Cygnus Reach Device
Overview

November 2025

What Reach Brings to an Embedded Device

OVERVIEW
01
02

Cygnus Reach
Overview

BZ6 App Architecture
Where the product comes alive

01
Cygnus Reach
What is Cygnus, vs What is Reach?

01 Cygnus Reach

Cygnus

• Cygnus is the name of a brand of i3, owned by Helios
• Reach is the remote support system that includes a

cloud backend to support a data pipeline, video link to
a customer’s phone as well as phone screen sharing.

• The Reach protocol is used by Reach to expose the
internals of a device.

• Basic Reach support can be implemented
without using the Reach protocol, though at
increased development in the app.

• Integrating the Reach protocol in your device gives
greater depth to support features

Reach

01 Cygnus Reach

Web Portal

• Tech services uses the web portal to initiate support sessions

• These are typically internal tech support people at the

OEM/ODM

• The web portal allows the support agent to interact with the

device as if they were next to it in BLE range, with the

assistance of the end user on site

• Allows the support agent to view the app screen as well as see

video from the phone that on site person.

For the Support Agent

01 Cygnus Reach

Apps

• An app is required to facilitate the remote support session

• Reach platform can be an independent app or built into an

existing app

• BLE is used to communicate from the app to the device

• The app is typically used by the end user on site

• Reach connect platform under development is for

always connected products

• i3 provides “generic” Android and iOS apps that can be used

in development.

• The Reach App can serve as a gateway to a web interface.

• The Reach App is typically customized for products.

• Skin

• Security

For the onsite person

01 Cygnus Reach

Reach

• C code for the device (server)

• Matching Java, C#, etc. on the app as a client

• Protobuf describes the serial communication stream.

• Format compatible with OpenPV

• Open-source Git repositories stored on github

• MIT license

• https://github.com/cygnus-technology

• A defined and isolated “integration” connects to a BLE stack.

• A JSON script defines the capabilities of a specific device

• Reach Protocol communicates over BLE, these types of

communicated are grouped into Services

Construction

https://github.com/cygnus-technology
https://github.com/cygnus-technology
https://github.com/cygnus-technology
https://github.com/cygnus-technology

01 Cygnus Reach

Reach Protocol

• Access to a Parameter Repository

• Issue “commands”

• Send and receive “files” (larger blocks of data)

• Access the device command line

• Set the RTC clock of the device

• Configure WiFi

• OTA

• Each of these services can easily be excluded and

otherwise configured.

• Each of these services is supported by the “generic” reach

app.

Services

01 Cygnus Reach

Reach Protocol

• “Over The Air Download Firmware Update”

• Typically a feature provided with a BLE stack.

• The provider of the stack (SiLabs, Microchip) typically provides their own tool (app) for

this purpose.

• The published protocol can be integrated into Reach apps.

OTA DFU

01 Cygnus Reach

Reach Protocol

• Remote access to variables stored in a “parameter repository.”

• Varying types from ints and floats to 32-character strings.

• Each entry has a human readable name and description.

• Caching is used to minimize access to a long list of parameters.

• By default, each parameter requires 180 bytes

• This can be reduced by limiting string sizes.

• Verbose descriptions are designed to describe the data to humans.

The Parameter Service

01 Cygnus Reach

Reach Protocol

• Devices often support a few commands.

• Reboot

• Factory Reset

• Reach gives a way to list and access such commands.

• Commands have a name, and ID and a description

• Commands execute a function on the device.

• (per the picture) A better balloon might say

"Set valve position according to all

parameters"

The Command Service

01 Cygnus Reach

Reach Protocol

• Reach support remote access to the device

command line.

• Allows a developer or support agent access to the

debug and status features that might not have been

included in the formal implementation of the Reach

protocol.

Remote Command Line Interface

01 Cygnus Reach

Reach Protocol

• Reach handles larger data structures with the “file” service.

• Any file system is device or application dependent. None is required.

• Files might be used to upload a complete configuration.

• Files might be used to by the support team to download a log.

• The file service provides a way to move a larger block of data.

• It says nothing about how the device manages this data.

The File Service

01 Cygnus Reach

Reach Protocol

• Time Service

• Small IoT devices often have a hardware RTC but no way to set

it. This service is designed to make it easy to check and set an

RTC.

• WiFi Service

• Many IoT devices are able to access WiFi

• Devices with no UI can be hard to configure for WiFi

• The WiFi service allows a user to set the WiFi SSID and PW via

the BLE interface to the phone.

• Excluded when the device has no WiFi.

Helpers

01 Cygnus Reach

Reach Protocol

• The BLE link can be configured with the standard BLE security features.

• Support accounts can have different levels of access to features:

• User may have the most limited access

• FAE may have more access

• Factory support may have full access

Security

01 Cygnus Reach

Reach Code Architecture

• Git Submodules

• reach-protobuf

• Shared with and used by all Cygnus clients (apps, web, etc)

• Defines communication protocol

• reach-c-stack

• C code implementing the stack

• Shared with and used by all Cygnus embedded devices (servers)

• reach-util

• Python code generating tool

• Reads JSON, writes C code

• Submodules are used as these codes are shared.

• Have you used git submodules?

Come Git it

01 Cygnus Reach

Reach Code Architecture

• Integrations/BZ6

• Adapts Reach to the local BLE system

• Should be shared by all BZ6 projects

• reach_bz6

• Application Specific

• Generated by CodeGenerator.py

• Operating on reach_bz6.json

• User code is added between comment blocks

Local Reach Components

02 For XMDi

Other Services
• Commands are cheap.

• Most products do not have very many commands.

• The time service is similarly cheap.

• An RTC is a good idea especially to support long term logging.

• The file service can give people a way to upload (or download) a configuration file.

• The file service can support the retrieval of a relatively long duration log.

• We probably have enough memory.

02 For XMDi

Reach Logging Features
• The Reach package provides logging and error handling tailored for embedded

environments

• i3_assert()

o i3_assert() is designed to catch “programming errors.” As the programmer, you

are saying “the code should never get here, so tell me right away if it does.”

o This is as opposed to application errors that can be handled.

o I3_assert() halts, printing where it is, and stopping at a breakpoint in the

debugger.

• I3_log()

o Like printf(), goes to the console.

o Has an enable flag as the first parameter to support run time enable or disable

of logs on a “per feature” basis.

o It’s a 32 bit flag. Reach uses 8 of these bits. The app can use the rest.

o Supports color coding using ANSI color codes

BZ6 App

Architecture
01
02

Cygnus Reach
Overview

BZ6 App Architecture
Where the product comes alive

02 BZ6 App Architecture

Using FreeRTOS
• Everything of the “app” happens in a task.

• BLE is supported on the BZ6 with a task.

• Sources are not provided.

• BLE communicates with “the app” via an RTOS queue.

• The queue is polled in the demos

• A dedicated task could wake up on it.

• Can our applications use a wrapper to support a possible migration to a

different RTOS?​

• Microchip provides osal_freertos.h which has most of the common

things.​

• It's missing sleep, but we could extend it.​

• The CMSIS OSAL is attractive, but Microchip doesn't directly support it.​

• We should ensure that the priority of all tasks defined in one place

(task_priorities.h)

• Here also briefly document the purpose of each task.

• Eg: blocks on X, polls every N ms for Y, handles peripheral Z.

One OS to rule them all

O2 BZ6 App Architecture

Thread Safe Programming
• Access to the parameter repositories will probably have to be thread safe.

• Console logging will have to be thread safe.

• In a device like this that has threads, the features and the thread

population will grow.

• We must take care to define our thread safety rules from the start.

• Clearly documenting the purpose of each thread and its

communication patterns is a big help.

• Global variables have their place, but be careful.

• Defining variables as static forces another programmer to think

twice before accessing it from another task.

• Minimize code in interrupts (signal a thread)

Lets unravel this one

02 BZ6 App Architecture

Malloc and Free
• Prefer static allocation for memory that is always used.

• The examples use malloc and free:

• OSAL_Malloc(), OSAL_Free()

• Use sparingly in your app:

• Use where the use is temporary.

• Carefully verify the corresponding free.

• We must install tracing, reporting and checking.

• Clearly understand where is the heap, what is its state.

• FreeRTOS has good features to support this.

• Watch out for use of malloc by (BLE) libraries, as these are not

traced.
Feature Purpose

xPortGetFreeHeapSize() Current free heap

xPortGetMinimumEverFreeHeapSize() Historical low-water mark

vApplicationMallocFailedHook() Catch malloc failures

traceMALLOC() / traceFREE() Instrument allocations/frees

	Slide 1
	Slide 2
	Slide 3
	Slide 4: 01 Cygnus Reach
	Slide 5: 01 Cygnus Reach
	Slide 6: 01 Cygnus Reach
	Slide 7: 01 Cygnus Reach
	Slide 8: 01 Cygnus Reach
	Slide 9: 01 Cygnus Reach
	Slide 10: 01 Cygnus Reach
	Slide 11: 01 Cygnus Reach
	Slide 12: 01 Cygnus Reach
	Slide 13: 01 Cygnus Reach
	Slide 14: 01 Cygnus Reach
	Slide 15: 01 Cygnus Reach
	Slide 16: 01 Cygnus Reach
	Slide 17: 01 Cygnus Reach
	Slide 18: 02 For XMDi
	Slide 19: 02 For XMDi
	Slide 20
	Slide 21: 02 BZ6 App Architecture
	Slide 22: O2 BZ6 App Architecture
	Slide 23: 02 BZ6 App Architecture

